Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Signal Transduct Target Ther ; 7(1): 318, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-2028663

ABSTRACT

Excessive inflammatory responses contribute to the pathogenesis and lethality of highly pathogenic human coronaviruses, but the underlying mechanism remains unclear. In this study, the N proteins of highly pathogenic human coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV), middle east respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), were found to bind MASP-2, a key serine protease in the lectin pathway of complement activation, resulting in excessive complement activation by potentiating MBL-dependent MASP-2 activation, and the deposition of MASP-2, C4b, activated C3 and C5b-9. Aggravated inflammatory lung injury was observed in mice infected with adenovirus expressing the N protein. Complement hyperactivation was also observed in SARS-CoV-2-infected patients. Either blocking the N protein:MASP-2 interaction, MASP-2 depletion or suppressing complement activation can significantly alleviate N protein-induced complement hyperactivation and lung injury in vitro and in vivo. Altogether, these data suggested that complement suppression may represent a novel therapeutic approach for pneumonia induced by these highly pathogenic coronaviruses.


Subject(s)
COVID-19 , Lung Injury , Animals , COVID-19/genetics , Complement Pathway, Mannose-Binding Lectin/genetics , Coronavirus Nucleocapsid Proteins , Humans , Inflammation/genetics , Mannose-Binding Protein-Associated Serine Proteases/genetics , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Mice , SARS-CoV-2
2.
Front Microbiol ; 12: 551602, 2021.
Article in English | MEDLINE | ID: covidwho-1305657

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV), a pathogen causing severe respiratory disease in humans that emerged in June 2012, is a novel beta coronavirus similar to severe acute respiratory syndrome coronavirus (SARS-CoV). In this study, immunoprecipitation and proximity ligation assays revealed that the nucleocapsid (N) protein of MERS-CoV interacted with human translation elongation factor 1A (EF1A), an essential component of the translation system with important roles in protein translation, cytokinesis, and filamentous actin (F-actin) bundling. The C-terminal motif (residues 359-363) of the N protein was the crucial domain involved in this interaction. The interaction between the MERS-CoV N protein and EF1A resulted in cytokinesis inhibition due to the formation of inactive F-actin bundles, as observed in an in vitro actin polymerization assay and in MERS-CoV-infected cells. Furthermore, the translation of a CoV-like reporter mRNA carrying the MERS-CoV 5'UTR was significantly potentiated by the N protein, indicating that a similar process may contribute to EF1A-associated viral protein translation. This study highlights the crucial role of EF1A in MERS-CoV infection and provides new insights into the pathogenesis of coronavirus infections.

SELECTION OF CITATIONS
SEARCH DETAIL